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The traditional valuation methodologies established in the early 1970s for standard traded options are
generally inadequate to handle the valuation of today’s more complex exotic options. In order to address
the valuation of sophisticated new options, a Monte Carlo technique was developed. Based on efficient
market assumptions, the behavior of a stock price over time was assumed to be a generalized Wiener pro-
cess. Several hypothetical European-style options were valued and compared to close form solutions.
Some possible solutions to the problem of the relatively high computational time required for precise

estimation are suggested.

INTRODUCTION

Derivative securities have witnessed incredible inno-
vation over the past years. The traditional valuation
methodologies established in the early 1970s for stan-
dard traded options are generally inadequate to handle
the valuation of today's more complex exotic options.
This paper presents an approach, based on Monte Carlo
simulation, to value European-style path-dependent
exotic options. While the accuracy of the Monte Carlo
method of option valuation has been known since
Boyle's (1977) seminal paper on the subject, it has been
generally assumed that the method is too computa-
tionally intensive to be of practical use. With recent
hardware and software developments and further ad-
vances in stratified sampling, this problem can, in part,
be solved. Furthermore, many of today's path-depen-
dent options, especially employee stock options, are so
complex that the Monte Carlo method must be em-
ployed. This paper is divided into five main sections.
The first section defines what path-dependent options
are and shows how they are used. The next section re-
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views the Monte Carlo method. The third section de-
velops an equation for the simulation of the path of a
stock price based on conditions given by the efficient
market hypothesis (EMH), while the fourth section
applies the Monte Carlo technique for the valuation of
standard options and several types of path-dependent
options. The last section is reserved for conclusions.

N\

PATH-DEPENDENT OPTIONS

Options are contracts that give their holder the right,
but not obligation, to buy or sell some underlying asset
at a fixed price for a specified period of time. A call
option is an option to buy a security or commodity at
some time in the future. If the time in the future is only
the day of expiration of the option, this type of option
is referred to as a European-style option. If the option
can be exercised at any time over the option life, it is
referred to as an American-style option. Put options, on
the other hand, are options to sell a security or com-
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NOTATIONS

C  Present value of a European-call option

E Expected value

r  Risk-free interest rate

s An estimate of the stock volatility

S Current stock price

t  Current time value

T  Expiration date

X Exercise price

¢  Random number normally distributed with aver-
age = 0 and standard deviation = 1

p  Stock return rate

o  Stock volatility

modity and can be either American- or European-style.
The payoff of a standard European-call option is the
maximum between zero and the difference between the
stock price at expiration and the exercise price. Simi-
larly, the payoff of a put option can be expressed as the
maximum between zero and the difference between the
exercise price and the price at expiration (Table 1). The
present value of an option is the discounted value of
the expected payoff. For example, for a European-call
option, this is expressed as:

C = e™™ E[max(S - X,0)]. €))

Notice that C is independent of the path that the se-
curity follows over the life of the option. If the price at
expiration is $100 and the exercise price is $90, the
payoff if $10. It makes no difference if the price is
$100 over the entire life of the option or if the price
climbed from $25. The payoff is path-independent,
therefore, the discounted expected value of the payoff
is also path-independent. A path-dependent option
makes S, X, or both statistics based on the path the
security follows over the life of the option. The best
way to understand path-dependent options is to con-
sider examples. The three most common types of path-
dependent options will be considered.

Lookback options

If the strike price, X, is replaced with the minimum
value of the security or commodity over the life of the
option, a Lookback call option is created. The Look-
back period can be over the entire option's life or some
sub-period of the option's life. To value a Lookback
put, the maximum price reached during the option's life
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Table 1. Path-dependent options.

=max (S - X,0)
=max (X - S,0)
=max (St - Spin.0)
=max (Spa - S1,0)
=max (S, - X,0)
=max (X - S,,.,0)
=max (S - S,,.,0)
=max (S, - S,0)

European-call payoff
European-put payoff
Lookback-call payoff
Lookback-put payoff
Average-rate-call payoff
Average-rate-put payoff
Average-strike-call payoff
Average-strike-put payoff

is needed. Lookback options are always at or in the
money. The zero in the corresponding formulas from
Table 1 can be eliminated without altering the option's
payoff. A Lookback can be interpreted as an option to
buy at the low or sell at the high. For this reason, Look-
back options are always more expensive than standard
options. Lookback options began trading in 1982, when
the Macotta Metals Corporation began trading Look-
backs on gold, silver, and platinum (Hunter and Stowe
1992a). To consider how a Lookback option may be
used, consider a corporation that requires a certain
amount of a commodity in one year. If the company
wanted to guarantee that it could purchase the
commodity at the lowest price over the year, a one-year
Lookback call option would be the proper option to
purchase.

Average or Asian options

Average or Asian options are options in which either
S or X is replaced with some form of average. If X is
replaced, the option is known as an average-strike op-
tion. If S is replaced, the option is known as an aver-
age-rate option. Options that use averaging terms can
become considerably complex. The average can be ei-
ther arithmetic or geometric, and can possibly be a
moving average. The average can be taken over a sub-
period of the option's life. Periods can even be given
special weighting. Furthermore, the frequency of the
averaging must also be taken into consideration. Aver-
age-strike options do not have a fixed strike price, but
rather the strike is based on some average of the price
path. Options involving averaging terms have become
extremely popular in recent years. Hunter and Stowe
(1992a) stated that, "Many multinational corporations
use average rate put options on foreign currencies to
hedge their estimated monthly foreign exchange
income in an effort to achieve some budgeted average
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exchange rate for the year." Hunter and Stowe (1992a)
then stated that commercial banks offer average rate
currency options because they usually have "an average
exchange rate on the books" that can be offset by sel-
ling average rate currency options.

Barrier options

Barrier options are options in which the payoff is
dependent upon the price path reaching a certain bar-
rier. There are four basic types of barrier options:
down-and-out, down-and-in, up-and-out, and up-and-in.
A down-and-out option goes out of existence if the
price path of the underlier falls to a certain barrier. An
up-and-out option goes out of existence if the price
path of the underlier rises to a certain barrier. A down-
and-in option comes into existence if the price path of
the underlier falls to a certain barrier. Likewise, an up-
and-in option comes into existence if the price path of
the underlier rises to a certain barrier. Options ending
with '-out' are sometimes referred to as knock-out, dis-
appearance, or extinguishing options, whereas options
ending in "-in' are referred to as knock-in or appearance
options (Ong 1996). The payoff for barrier options is
exactly as for European options except only the barrier
condition is taken into consideration. In effect, barrier
options are decomposing the payoff of a standard op-
tion. Purchasing a knock-out option and a knock-in op-
tion is equivalent to purchasing a standard option.
From this, it is known that the premium on a knock-in
or knock-out option should be less than the premium on
a standard option (Ong 1996). The smaller premium for
barrier options is the prime reason they are traded
(Hunter and Stowe 1992a). It is possible to hedge
against large movements in prices without having to
pay the full premium for a standard option. Barrier op-
tions can also become extremely complex. Multiple
barriers and curvilinear barrier options are two exam-
ples. Multiple barriers have two or more barrier levels.
The simplest type of multiple barrier, the double bar-
rier, will be valued later. Double barriers knock-in or
knock-out if the price path reaches either an upper or
lower barrier. In a curvilinear barrier, the barrier is not
a constant, but rather a function. The most common
type of curvilinear barrier is an exponential barrier
(Ong 1996).

Other path-dependent options

While the above are the three major categories of
path-dependent options, there are several other path-
dependent options that are sometimes referred to in the
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literature; examples include Ladder, Ratchet, and Shout
options. All of these options can be related in some
way back to the Lookback option. There is a type of
path-dependent option that is exchange traded. These
are barrier price options referred to as CAP options
traded on both the Chicago Board Options Exchange
(CBOE) and the American Stock Exchange (AMEX).
A CAP option is a type of barrier option. If the barrier
is reached, the option pays, on that day, the difference
between the underlier (a stock index) and the ceiling
(cap). The ceiling on CBOE CAPs is $30 (Hull 1993).

Any of the general categories of path-dependent
options presented above can be combined into a new
type of option. Examples can be constructed such as
setting a barrier equal to an average (e.g., the price path
must have a 30-d average above some constant). Also,
path dependency can be incorporated with other non-
path-dependent exotics. While these types of options
may not be frequently traded, they arise in many em-
ployee stock options.

MONTE CARLO SIMULATION

Monte Carlo simulation is a powerful tool that was
originally developed to solve problems in atomic phy-
sics. Monte Carlo methods essentially reduce complex
problems to problems of expected value through the use
of simulated random quantities. The description of the
Monte Carlo method is usually given in the form of ap-
proximating a definite integral. Since such a descrip-
tion requires knowledge of probability theory and inte-
gration, Sobol's (1974) more intuitive approach will be
used. Consider the problem of estimating the area with-
inthe closed curve within the unit square shown inFig. 1.

One can estimate the area of the curve by sampling
N random points in the unit square. The number of
points that fall inside the closed curve N’ divided by N
is a Monte Carlo estimate of the area within the curve.
As N approaches «, the estimate approaches the true
value. An error associated with this estimate can also
be calculated. The above is given only for an intuitive
understanding of the Monte Carlo method. Sobol
(1974) notes that one would not use the Monte Carlo
method to estimate an area because superior methods
exist.

SIMULATING A PRICE PATH

The weak form of the EMH states that the price in a
market should reflect all historical price information.
This is to say that the best predictor of the next period's
price of a security is the current period price. The fol-
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Fig. 1. Estimating the area within the closed curve.

lowing is a brief mathematical description for the gen-
eration of a price path. For a more complete descrip-
tion, see Hull (1993). Following Hull (1993), efficient
markets can be described by a Markov process. A
Markov process is a stochastic process in which only
the present value of a variable is relevant to predicting
the future. It is generally assumed that markets follow
a more particular type of Markov process known as a
Weiner process. According to Hull (1993), a variable
Z follows a Weiner process if it meets the following
two properties. The first property is

AZ = &/AL, @)

where ¢ is a random drawing from an N (0,1) dis-
tribution and t is time. The second property is that the
A's are independent. It follows then that A has mean 0
and variance equal to At. Rewriting Eq. 2 for contin-
uous time yields:

dz = &/dt. 3)

To fully describe the price path of a security, it is nec-
essary to generalize the Weiner process in Eq. 3 as fol-
lows:

dx=Adt+Bd, @)

where A and B are constants.

The first term on the right-hand side represents a
constant drift per unit time. The second term can be
though of as the addition of a random component. The
randomness is a constant times the Weiner process.
While the above model could be used as the basis for
the generation of a price path, it fails to take into ac-
count two assumptions regarding stock price behavior
(Hull 1993). The first assumption is that the required
return of an investor is independent of a stock's price
(e.g., if an investor requires a 10% return, it is required
whether the stock price is $10 or $75). This will invali-
date the constant drift term in Eq. 4. The term will be
replaced by a drift rate expressed as a proportion of the
stock price:

dS=pSd, )
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where p is the expected rate of return on the stock and
S is the stock price.

The second assumption is similar except that it deals
with the random portion in Eq. 4. An investor should
be uncertain as to the return on a stock regardless of
the stock's price. If ¢ is defined as variance of a pro-
portional change in the stock price, then ¢® $? is the
instantaneous variance rate of S. From this, the proper
model for the basis of a stock price path is:

dS = Sdt + 6Sd . (6)

The above equation is a specific type of generalized
Weiner process known as an Ito process. For a com-
plete description, see Ito (1951) and Hull (1993). Re-
turning to discrete time, Eq. 6 becomes:

AS = uSAt + ceSJ/At. @)

This equation can be used to simulate stock price
paths, but there are several alterations that can be made
to make Eq. 7 more useful. From Eq. 7, it results (Hull
1993):

S + AS = Se[("_é)At o/ ®)

Since ¢ is generally unknown, some estimate of the
volatility must be used. Furthermore, Cox and Ross
(1976) showed, in a risk-neutral world, that the equi-
librium rate of return on common stock is equal to the
risk-free rate. Therefore, Eq. 8 becomes:

s, - ste[("'sz‘z)‘“ o] ©)

where s is a measure of volatility over the next period
and r is the risk-free rate of interest. This is an equation
by which the price path of a stock can be simulated.

PRICING OPTIONS BY MONTE CARLO
SIMULATION

The model that was derived in the previous section
can now be used to price options. To demonstrate the
technique, various options will be priced via Monte
Carlo simulation, and the results will be compared to
closed form analytic solutions (Table 2). In general, the
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technique involves simulating the possible price paths
based on Eq. 9. The value of the stock price in the next
period depends on a random drawing from a N (0,1)
distribution. Thus by using different random drawings,
one can simulate possible stock prices in the next
period. These prices compose possible values of S,,.
These prices can then be placed in Eq. 9, replacing S,
to get possible prices for S,,,. This process is continued
until S,,, is reached.

Consider a standard European-call option on a stock
with the characteristics listed in Table 2 for Option 1.
Since the price path is not required to price a standard
European option, only the possible prices at expiration
must be simulated. Notice that, because the path is not
necessary, At is set to (T-t) in Eq. 9. Each random
drawing is then associated with a possible stock price
at expiration. The number of random drawings is re-
ferred to as the number of iterations. Running 500 iter-
ations generates 500 possible values of the stock price
at expiration. The payoff of the option is then calcu-
lated for each iteration according to:

max (S, - 20,0) (10)

and these possible payoffs are then averaged. The
average is then discounted to the present and is the
Monte Carlo option price. The above example yields a
Monte Carlo value of $5.9837. For just 500 iterations,
this result compares well with the Black-Scholes analy-
tic pricing for standard European options which is
$5.9842.

To price a path-dependent option, a high number of
possible paths must be generated. To demonstrate it,
consider Option 2 from Table 2. To generate possible
price paths, the above information is placed into Eq. 9.
Notice that At equals 0.00274 which is approximately
one day (1/365). Making a single random drawing will
generate a possible value for one day into the future.
This possible value is placed into Eq. 9 as the current
period price, and this is continued until S,,;, is reached.
This generates a possible price path. This process is re-
peated numerous times to generate a high number of
price paths. The geometric average, S,,., of each price
path is then taken. The payoff for each path is then cal-
culated according to:

max (Save - 95a0) (1 1)

The payoffs are then averaged and discounted. This
is the Monte Carlo price estimate. The Monte Carlo es-
timate for the above example is $5.772 compared to a
closed form value of $5.730.



62

M.A. Pizzi and G.L. Montgomery

Table 2. Option valuation.

Option1 Option2 Option3  Option 4
S $25 $100 $100 $100
X $20 $95 $100 $95
o 35% 35% 35% 35%
r 5.5% 7.5% 7.5% 7.5%
T-t 05y 30d 30d 30d
Lower barrier - - $90 -
Upper barrier - - $115 -
Iterations 500 2000 2000 2000

Option value

Monte Carlo $5.9837 $5.772 $1.9619 $6.72
Closed solution ~ $5.9842  $5.730 - -

A Lookback option can be priced in a similar way.
The path is generated as in the above example. Then,
instead of taking the average of each path, the mini-
mum value for each path is calculated. The payoff for
each path is then calculated according to:
max (S, - Spin» 0) (12)
where S, is the terminal price (in the example above, it
would be S,;) and S, is the minimum for each path.
The average payoff is then calculated and discounted
and is the Monte Carlo price estimate. Average-rate
and Lookback puts can be valued simply by changing
to the appropriate payoff formula described in the first
section.

The process to value a barrier option is similar to the
above. To demonstrate the valuation of a double bar-
rier, consider the call option listed Option 3 from
Table 2. The 30-d price path is simulated as described
above. This option will knock-out if the price goes
above 115 or falls below 90. In order to value this
option, each sample path must be considered. If a sam-
ple path reaches or breaks either barrier, its payoff is
set to zero. If the sample path did not reach either
barrier, then the payoff is calculated as if it were a
standard option. The payoffs, including the zeros, are
then averaged and discounted. This is the Monte Carlo
price estimate. To see if the value in the above example
is correct, one can estimate the value of a knock-in
option based on the same sample paths. This is done by
setting all payoffs to zero except those that break either
of the barriers. Averaging the value of all payoffs and
discounting will yield the Monte Carlo price. In the
above example, the value is $2.3850. Adding the value

of the knock-in and the knock-out should result in a
value that is close to the value of a standard option.
Recall that buying a knock-out and a knock-in option
is equivalent to purchasing a standard option. In this
case, the sum is $4.3469. The Black-Scholes price for
a standard European option is $4.3039.

The last option that is priced, Option 4 from Table 2,
demonstrates the flexibility of the Monte Carlo meth-
od. Consider an option that knocks-in only if the arith-
metic average value of the price of the underlier over
the last 15 d of the option’s life is above some barrier.
It would be difficult, if not impossible, to arrive at a
closed form expression for the value of such an option.
In order to value the option via Monte Carlo, numerous
sample price paths were created as above. The arith-
metic average of the last 15 d of each price path were
taken, and all payoffs were set to zero except those that
meet or exceed the barrier. All payoffs were averaged
and discounted in order to arrive at the Monte Carlo
price.

The number of iterations used in the above examples
is low. The standard errors associated with all of the
above examples are all fairly large in relation to the
options price, despite the quality of the point estimate.
Several solutions to this problem are possible. The first
is to perform a higher number of iterations. While this
should be done, it should be noted that the standard
error is inversely proportional to the square of the num-
ber of iterations. Thus, to decrease the error by a factor
of 10 requires increasing the number of iterations by a
factor of 100. The above examples were calculated
using @RISK, a Monte Carlo add-in program for MS-
Excel. Two thousand iterations of a 60-d price path
take approximately 1 min on a 100 Mhz Pentium-based
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computer. Two hundred thousand iterations need to be
performed in order to decrease the error by a factor of
10. Therefore, even with higher speed computers,
Monte Carlo still presents a practical problem in re-
gards to computation speed when an extremely precise
value is necessary. There are two approaches to this
problem. The classical approach is to use a method of
variance reduction such as the control variate technique
or the antithetic variable technique. Both techniques
are briefly described by Hull (1993). Another possible
solution is to use low discrepancy sequences which are
sometimes referred to as quasi-random sequences or
stratified sampling techniques. Instead of drawing
random numbers from a distribution as in Monte Carlo,
low discrepancy sequences sample evenly from the
distribution. This allows for a superior estimate in far
fewer iterations. Boyle (1996) showed that estimates
based on low discrepancy sequences converged after
38 400 iterations, whereas Monte Carlo required
614 000 iterations in pricing an Asian oil option. The
@RISK program has the ability to perform a type low
discrepancy sequence sampling based on a Latin
Hypercube. Using this technique usually resulted in a
more accurate price than Monte Carlo.

CONCLUSION

In this paper, various types of path-dependent options
were reviewed. The behavior of a stock price over time
was shown to be a generalized Wiener process based
on efficient market assumptions. From this process, a
Monte Carlo technique of option valuation was deter-
mined. Several hypothetical options were valued and
compared to close form solutions. Several possible
solutions to the problem of the high computational time
required for precise estimation were suggested. Further
research is necessary on the use of low discrepancy
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sequences in option pricing. Also, there are several
possible methods for valuing American-style path-
dependent options via Monte Carlo. Further research is
needed in this area. It may be possible to incorporate
information as to the distribution of a particular under-
lier and incorporate this information into the path-
generating formula. This is especially true if markets
are not entirely efficient and the assumptions under-
lying the path-generating formula are invalid.
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