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Suppose that the function f(x), f: Rn 

→ R, can be locally approximated by the following 
quadratic form:  
 

x  A  x 
2

1
 + x  b - c = f(x) ⋅⋅⋅  

 
The basic idea of the variable metric algorithm is to build up, iteratively, a good approximation 
of the inverse Hessian matrix A-1, i.e. to build up a sequence of matrices Hi with the following 
property:  
 

→∝i   for   A = H -1
ilim  

 
Consider finding the minimum by using Newton’s method. Near the current point xi we have the 
following second order approximation: 
 

)x - (x  A  )x - (x 
2

1
 + )xf(   )x - (x + )xf( = f(x) iiiii ⋅⋅∇⋅  

 
Therefore: 
 

)x - (x  A + )xf(  = f(x) ii ⋅∇∇  
 
From the minimum condition (i.e., the gradient is zero) we get the next iteration point:  
 

)xf(   A - = x - x i
-1

i ∇⋅  
 

or: 
 

))xf(  - )xf( (  H = x - x i1+i1+ii1+i ∇∇⋅  
 
 
 
 
Using the above mentioned approximation for the inverse Hessian matrix it results: 
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))xf(  - )xf( (  A = x - x i1+i

-1
i1+i ∇∇⋅  

 
The left-hand side of the above equation is the finite step to take in order to reach the exact 
minimum. The right-hand side is defined once we have an accurate H. The variable metric 
method is labeled also as a quasi-Newton method because it uses an approximation instead of the 
actual Hessian matrix. The descent direction requires A to be a positive definite matrix. Far from 
the minimum, this condition can be violated. The quasi-Newton method may be better than the 
original Newton method because it approximates the inverse Hessian matrix using positive 
definite matrices. 
 
The Davidon-Fletcher-Powell algorithm updates the H matrix as follows: 
 

))xf( - )xf((  H  ))xf( - )xf((

))]xf( - )xf((  H[ ))] xf( - )xf((  H[
 -
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Where ⊗ denote the “outer” (or “direct”) product of two vectors. The Broyden-Fletcher-
Goldfarb-Shanno algorithm updates the H matrix as follows:  
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Where: 
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