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The objective of this paper is to provide a methodology for the computation of the value at risk 
(VaR) of a portfolio containing both long and short positions.  The first sections present the 
definition of VaR and the usual approximations used for VaR estimates.  The following sections 
provide VaR estimates for portfolio having only long (or short) positions, and VaR estimates for 
portfolio having both long and short positions. 
 
VALUE AT RISK DEFINITION 
 
According to Jorion (1997; page 87), for a given (1-α)% confidence level (e.g., 95%) the 
definition of VaR relative to the mean is: 
 

VaR = E[Portfolio] - qα  (1) 
 
where: 
 
E[Portfolio] = expected value of the portfolio on the date of interest 
qα  = the α quantile (e.g., 5%) of the portfolio value on the date of interest 
 
The time horizon (i.e., the time interval between today and the future date of interest) and the 
confidence level (e.g., 95%) are the two parameters used in the definition of VaR. 
 
Based on the definition of VaR it results that, with (1-α)% confidence level (e.g., 95%), the 
losses for the selected time horizon will not exceed the value of VaR.  This is the reason why 
VaR is commonly related to a “confidence level.”  However, it is more adequate to refer to VaR 
as a quantile estimate.  Because VaR is an estimate, it is possible and useful to provide a 
“confidence interval” for VaR.  This “confidence interval” built around the estimated VaR has its 
own “confidence level.”  Labeling VaR as a quantile removes the confusion of a “confidence 
interval” built around a “confidence level.”  It is less confusing to deal with a “confidence 
interval” built for a quantile.  However, the usage of “confidence level” as a parameter for VaR 
is widely accepted by the industry and academia. 
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APPROXIMATIONS USED FOR VaR ESTIMATES 
 
Longerstaey and Spencer (1996) define the continuously compounded returns (ri,j) and the 
percent returns (Ri,j) as follows: 
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where Si,j  is the value of asset j  at time t i .  It should be noted that the return rates are equal to the 
corresponding returns divided by the time interval ∆t i = ti – ti-1. 
 
The correct temporal aggregation of these returns is as follows (Longerstaey and Spencer 1996): 
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Similarly, the correct cross-section aggregation is as follows (Longerstaey and Spencer 1996): 
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where wj is the fraction of asset j  with respect to the total portfolio. 
 
The continuously compounded returns are used in RiskMetrics as the basis for all computations 
(Longerstaey and Spencer 1996).  In practice, RiskMetrics assumes that a portfolio return is a 
weighted average of continuously compounded returns (Longerstaey and Spencer 1996): 
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It should be noted that this weighted average of continuously compounded returns - used as an 
approximation by RiskMetrics (Longerstaey and Spencer 1996) - is different with respect to the 
correct cross-section aggregation mentioned on the same page 49 of Longerstaey and Spencer 
(1996). 
 
Another approximation largely used for VaR computations is (Longerstaey and Spencer 1996; 
page 8): 
 

e xx ≅ +1 9( )
 

 
For the purpose of VaR computations, some authors (Longerstaey and Spencer 1996; Jorion 
1997) assume that the expected rate of return of the portfolio is zero.  The main reason is the 
relative high value of the portfolio volatility.  The difficulty of obtaining a good quality estimate 
for the rate of return of the portfolio is another argument. 
 
VaR ESTIMATES FOR PORTFOLIO WITH LONG (OR SHORT) PO SITIONS ONLY 
 
For a given (1-α)% confidence level (e.g., 95%), assuming a normal probability distribution 
function for the rates of return, the VaR of a given portfolio is computed as (Longerstaey and 
Spencer 1996; page 8): 
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where: 

Portfolio  =  portfolio value 
µ  = portfolio growth rate 
t  = time horizon 
σ  = portfolio volatility 
z  = the (1-α) quantile of the standard normal distribution N(0,1) 
 
It should be noted that using the z value is correct only when the portfolio volatility is known 
exactly.  If an estimate of the portfolio volatility is used instead of the true value of the portfolio 
volatility, than a correct estimate of VaR requires the use of the Student t value.  The Student t 
value is larger than the corresponding z value.  The VaR based on the Student t value is larger 
than the VaR based on the corresponding z value.  This fact accounts for the uncertainty 
generated as a result of using an estimate of the portfolio volatility instead of the true value of the 
portfolio volatility.  However, when the portfolio volatility is estimated using a large number of 
data (e.g., greater than 30), the Student t value is practically equal to the z value. 
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Based on the volatilities of the individual assets (σi), their weights in the portfolio value (wi), and 
their correlation coefficients (ρij ), the portfolio volatility is computed as (Jorion 1997; page 150):  
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It should be noted that the weights wi cannot be computed for a portfolio with both long and 
short positions having a total net value of zero.  Moreover, a portfolio with both long and short 
positions having a total value close to zero may have a relatively high volatility (McCarthy 
1999). 
 
VaR ESTIMATES FOR PORTFOLIO WITH BOTH LONG AND SHOR T POSITIONS 
 
Based on the RiskMetrics approximations for continuously compounded returns and VaR, it 
results that: 
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where: 
 
Asseti   =  portfolio value invested in asset i 
µi   = the growth rate for asset i. 
 
A positive value for Asseti denotes a long position, while a negative value denotes a short 
position. 
 
This approximation (equation 12) is similar to equation (1.39) of Deutsch (2003).  It should be 
noted that equation (1.39) of Deutsch (2003) is for portfolios having either long or short 
positions.  If t = 1 equation (12) becomes identical with equation (10) of Chapados and Bengio 
(2000).  TotalSum (2003) provides a numerical example for a portfolio having both long and 
short positions using equation (12) as a VaR approximation with µi = 0. 
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The corresponding “un-diversified” VaR is: 
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The VaR approximation (equation 12) handles in a smooth manner the case of portfolios having 
an aggregate value close to zero.   
 
As long as the direct effect of the rates of return is neglected for VaR estimates (i.e., µi = 0), the 
long and short holders of a given portfolio have the same risk.  If the total amount (i.e., long and 
short positions) invested in each asset (or assets having exactly the same volatility and 
correlation coefficient +1.0) is zero, then the VaR is zero.  Similarly, if all positions in each asset 
are matched by equal positions in another asset that has exactly the same volatility and the 
correlation coefficient of these two assets is exactly –1.0, then the VaR is zero.  When the 
hedging is done using assets that (1) are not perfectly (positively or negatively) correlated and 
(2) have different volatilities, then the VaR is greater than zero, even when the total portfolio 
value is zero. 
 
If the growth rates are taken into account, this VaR approximation accounts for an increased risk 
due to (1) long positions with negative growth rates or (2) short positions with positive growth 
rates.  Similarly, it accounts for a reduced risk due to (1) long positions with positive growth 
rates or (2) short positions with negative growth rates. 
 
MONTE CARLO VALUE AT RISK ESTIMATES FOR PORTFOLIO W ITH BOTH 
LONG AND SHORT POSITIONS 
 
All the long positions can be lumped together into an “index.”  Based on historical data for the 
individual stocks, the history of this “index” can be established.  Similarly, all short positions can 
be lumped together into another “index” and its history can be established from the historical 
data available for the individual stocks.  For each one of these “indexes” we can compute its 
growth rate and volatility.  Additionally, we can compute the correlation coefficient between the 
rates of return of the two “indexes.”  The Monte Carlo simulation is required only for two 
positions, i.e. the two “indexes.”  The actual return rates for these “indexes” are generated based 
on correlated random numbers.  To be compatible with the VaR estimates provided by equations 
(10) and (12), the Monte Carlo simulation must assume the normality of the return rates for these 
“indexes.”  (Using a historical approach for Monte Carlo simulations may be required when we 
are faced with significant departures from normality.  However, this case is outside the scope of 
our analysis.) 
 
When the portfolio contains only long (or short) positions, the Monte Carlo VaR estimate is 
close to the VaR estimate provided by equation (10) (without applying the approximation for the 
exponential function provided by equation (9)).  When the portfolio contains both long and short 
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positions resulting in an overall portfolio value close to zero, the Monte Carlo VaR estimate is 
close to the VaR estimate provided by equation (12).  Therefore, for portfolios containing both 
long and short positions, in order to check the numerical effects of different approximations, it is 
recommended to use both the Monte Carlo method and equation (12).  For portfolios containing 
only long (or short) positions, the VaR estimate provided by equation (10) is preferable to the 
estimates provided by equation (12) or Monte Carlo simulation. 
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