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ABSTRACT 
 
The geometric Brownian motion model is widely used to explain the stock price time series.  The 
following sections summarize its main features. The stochastic model may be viewed as an 
extension of the usual deterministic model for which the rate of return is viewed as a constant 
value subjected to perturbations.  We present both the Ito and Stratonovich interpretations of the 
resulting stochastic differential equation.  The parameters estimation and model predictions 
could be done using either interpretation; however, the same interpretation must be used for both 
steps (i.e., parameters estimation and model predictions).  
 
INTRODUCTION 
 
Bachelier (1900) seems to be the first to have provided an analytical valuation for stock options.   
His work is rather remarkable because by addressing the problem of option pricing, Bachelier 
(1900) derived most of the theory of diffusion processes.  The mathematical theory of Brownian 
motion has been formulated by Bachelier (1900) five years before Einstein’s classic paper 
(Einstein 1905).  Bachelier (1900) has formulated avant la lettre the Chapman-Kolmogorov 
equation (von Smoluchowski 1906; Chapman 1916; Chapman 1917; Kolmogorov 1931), called 
today the Chapman-Kolmogorov-Smoluchowski-Bachelier equation (Brown et al. 1995), and the 
Fokker-Plank or Kolmogorov equation (von Smoluchowski 1906; Fokker 1914; Fokker 1917; 
Plank 1917; Kolmogorov 1931).  Moreover, the first-passage distribution function for the drift-
free case was provided by Bachelier (1900) before Schrödinger (1915), and the effect of an 
absorbing barrier on Brownian motion was addressed by Bachelier (1900; 1901) prior to von 
Smoluchowski (1915; 1916). For a detailed summary of these early results the reader is referred 
to von Smoluchowski (1912;1916).   
 
Jevons (1878) pointed out that the chaotic movement of microscopic particles suspended in 
liquids had been noted long before Brown (1827) published his careful observations; however, it 
should be noted that Brown (1827) was the first to emphasize its ubiquity and to exclude its 
explanation as a biological phenomenon.  A precise definition of the Brownian motion involves a 
measure on the path space that was first provided by Borel (1909) and constituted the basis of the 
formal theory of Wiener (1921a; 1921b; 1923). 
 
Bachelier assumed stock price dynamics with a Brownian motion without drift (resulting in a 
normal distribution for the stock prices), and no time-value of money.  The formula provided 
may be used to valuate a European style call option.  Later on, Kruizenga (1956) obtained the 
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same results as Bachelier (1900).  As pointed out by Merton (1973) and Smith (1976), this 
approach allows negative realizations for both stock and option prices.  Moreover, the option 
price may exceed the price of its underlying asset.  
 
Kendall (1953), Roberts (1959), Osborne (1959; 1964) and Samuelson (1965) modified the 
Bachelier model (also known as the “arithmetic Brownian motion” model) assuming that the 
return rates, instead of the stock prices, follow a Brownian motion (also known as the “geometric 
Brownian motion” model or the “economic Brownian motion” model).  As a result of the 
geometric Brownian motion the stock prices follow a log-normal distribution, instead of a 
normal distribution as assumed by Bachelier (1900).   Sprenkle (1961; 1964) took into account 
risk aversion and the drift of the Brownian motion, and based upon the log-normal distribution of 
the stock prices, provided a new formula for the valuation of a European style call option that 
rules out negative option prices.  Boness (1964) improved the model of Sprenkle by considering 
the time value of money: the present value of a call option is the discounted value provided by 
Sprenkle (1961) using the expected rate of return of the stock as the discount rate.  Samuelson 
(1965) provided a rigorous review of the option valuation theory and pointed out that an option 
may have a different level of risk when compared with a stock, and therefore the discount rate 
used by Boness (1964) is incorrect.  Samuelson and Merton (1969) provided a general 
equilibrium formula that depends on the utility function assumed for a typical investor. 
 
The Black and Scholes (1973) model is often regarded as either the end or the beginning of the 
option valuation history.  Using two different approaches for the valuation of European style 
options, they present a general equilibrium solution that is a function of “observable” variables 
only, making therefore the model subject to direct empirical tests.  Based on the formula of 
Thorp and Kassouf (1967) that determines the ratio of shares of stock to options needed to 
construct a hedged position, and recognizing that shares and options can be combined to 
construct a riskless portfolio, Black and Scholes (1973) developed an analytical model that 
provides a no-arbitrage value for options.  An alternative derivation is based upon the capital 
asset pricing model that provides a general method for discounting under uncertainty.  Merton 
(1973) performed a rigorous analysis of the Black and Scholes (1973) model analyzing its 
assumptions.  The stock price dynamics is described by a Brownian motion with drift.  The 
manifest characteristic of the final valuation formula is the parameters it does not depend on.  
The option price does not depend on the expected return rate of the stock or the risk preferences 
of the investors.  It is not assumed that the investors agree on the expected return rate of the 
stock.  It is expected that investors may have quite different estimates for current and future 
returns.  However, the option price depends on the risk-free interest rate and on the variance of 
the return rate of the stock.  A detailed analysis of the post Black-Scholes models is presented by 
Smithson (1992).   
 
Galai (1978) provided the correct discount rate for options, reconciling the Boness (1964) - 
Samuelson (1965) approach with the Black and Scholes (1973) formula.  The Black and Scholes 
(1973) formula is identical with the Boness (1964) formula if instead of the return rate of the 
stock we use the risk-free interest rate.  However, this risk-neutral approach may lead to 
confusion because it may be inferred that it can be proved that the return rate of the stock equals 
the risk-free interest rate (Wilmott et al. 1997).  
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Barrier options have become increasingly popular over the last years (Johnson and Stulz 1987; 
Boyle and Turnbull 1989; Benson and Daniel 1991; Hudson 1991; Hudson 1995; Derman and 
Kani 1993; Ravindran 1993; Bowie and Carr 1994; Hart and Ross 1994; Heynen and Kat 1994a; 
Heynen and Kat 1994b; Rich 1994; Schnabel and Wei 1994; Broadie and Detemple 1995; Hull 
and White 1995; Jarrow and Turnbull 1995; Zhang 1995; Gerber and Shiu 1996).  Practitioners 
who trade these instruments rely heavily on the numerical solutions provided by McConnell and 
Schwartz (1986), Trippi and Chance (1993), Boyle and Lau (1994), Derman et al. (1994), Kat 
and Verdonk (1995), Ritchken (1995), Geman and Yor (1996), Dewynne and Willmott (1997).  
For European style options with a single barrier, analytical solutions were provided by Merton 
(1973), Cox and Rubinstein (1985) and Rubinstein and Reiner (1991).  Kunitomo and Ikeda 
(1992) provided an analytical solution for options with a double barrier but without taking into 
account the stock yield and the rebates corresponding to the barriers.   
 
DETERMINISTIC MODEL 
 
The deterministic model reads as follows: 
 

0 = tatS =         Swith Sr = 
dt

dS
0  

 
Using the substitution y = ln ( S/S0 ) we simplify the above model: 
 

0 = tat0 =y         with r = 
dt

dy
 

  
STOCHASIC MODEL 
 
Suppose that the r  constant is the sum of a nominal value and of its perturbation: 
 

µµ ’ +  = r  

 
The fluctuations, µ’, can be considered as a Gaussian white noise stochastic process, that is with 
zero expectation and the stationary autocorrelation function given by the "Dirac delta function" 
multiplied by a constant.  This implies that the r  constant can change infinitely fast. White noise 
is not physically realizable, because no process can change infinitely fast. Nevertheless it is often 
employed as a model for random physical systems. It is related to the Wiener process (Wiener 
1921a; Wiener 1921b; Wiener 1923), a continuous parameter Gaussian process with zero 
expectation and stationary independent increments. Although the Wiener process is not 
differentiable, it can be shown that formally its derivative is the white noise process (Jazwinski, 
1970).  The ordinary differential equation for S becomes: 
 

dW g + dt f = dS  

 
where: 
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 S= gand S = f µ  

 
and dw is a Wiener process having its variance is given by: 
 

dt  =dw]  E[dw 2σ  
 
There exist two alternative interpretations of the above stochastic differential equation, the Ito 
and Stratonovich interpretations. The differences arise how to compute the stochastic integral  
∫gdw which appears when we integrate the stochastic differential equation. These different 
interpretations generally yield different solutions and there is no mathematical reason to prefer 
one interpretation over the other. 
 
Ito interpretation.  The stochastic integral in the sense of Ito (1944; 1946; 1951) is defined as 
follows: 
 

)]t w(- )t[w(] t),tg[w( 
0t

l.i.m.
 = dwt] g[w(t), i1+iii

1-n

0=i

b

a
∑∫ →∆

 

 
where a = t0 < t1  < t2   ... < tn = b   is a partition of the interval [ a , b ]  with  
 

∆t = max (ti+1 - ti) 
                                          i 
 
and l.i.m. stands for "limit in the mean" (Jazwinski, 1970). When the stochastic differential 
equation is interpreted in the Ito sense, the rate of change of the transition probability density 
function p is given by the Fokker-Planck (von Smoluchowski 1906; Fokker 1914; Fokker 1917; 
Plank 1917) or forward Kolmogorov (1931) equation:  
 

S

p) g(
 

2
+

S

p) (f
 - = 

t

p
2

222

∂
∂

∂
∂

∂
∂ σ  

 
The initial condition selected for the Fokker-Planck equation is: 
 

p(S,0) = δ(S0) 
                               

which corresponds to the usual deterministic initial condition. The solution of the Fokker-Planck 
equation completely specifies the process described by the stochastic differential equation. 
 
Stratonovich interpretation.  The stochastic integral, in the sense of Stratonovich (1964; 1966), 
is defined as follows: 
 



 
 

                                                                                                                                                         Page 5 of 19 

Stochastic Modeling of Stock Prices 
© Montgomery Investment Technology, Inc. / Sorin R. Straja, Ph.D., FRM 
May 1997 

)]t w(- )t[w(] t,
2

)tw(+)tw(
g[ 

0t

l.i.m.
 = dwt] g[w(t), i1+ii

i1+i
1-n

0=i

b

a
∑∫ →∆

 

 
where we have adopted the same notations as for the Ito integral.  
 
We observe that Stratonovich uses a "symmetric" definition of the stochastic integral which can 
be related to the Ito definition. The stochastic differential equation, in the Ito sense, 
corresponding to the Stratonovich interpretation of the same equation is (Jazwinski, 1970):  
 

dw g + ]dt
S

g
 g 

2
 + [f = dS

2

∂
∂σ

 

 
Table I lists the results for our particular case. We mention that the process dynamics is governed 
by 2 parameters, µ and σ. The two interpretations give similar solutions, but µ from the Ito case 
should be replaced by (µ + σ2/2) in order to obtain the Stratonovich solution. Therefore, if this 
model is used to fit the market data, both Ito and Stratonovich interpretations give the same 
prediction but using slightly different values for their µ parameters. We have no mathematical 
reason to make a choice between the Ito and Stratonovich interpretations. The fact that there are 
two interpretations of the white noise that yield two different solutions is due to the pathological 
nature of the white noise and Wiener processes. 
 
If, instead of S, we investigate the dynamics of y, the Ito and Stratonovich interpretations 
become identical. The results are presented in Table II. 
 
The main result is that the stock price is distributed according to the lognormal law, and not to 
the normal one. 
 
PARAMETERS ESTIMATION 
 
Maximum likelihood estimates.  Estimates of µ and σ can be obtained from the stock prices at 
times o, t1, t2, …, tN . The recorded stock values are denoted as S(0) = S0, S(t1)= S1, ..., S(tN) = 
SN and the time intervals between observations are t1-0 = ∆t1, t2-t1 = ∆t2, ..., tN-tN-1 = ∆tN . The 
likelihood function L(µ,σ) is defined as the joint probability density function for the stock price 
given the recorded values. We underline that the probability density function of Si given Si-1 is a 
function of ∆t i but not of t i. The results obtained are listed in Tables III and IV. As usually, the 
Maximum Likelihood Estimate of σ2 is biased, an unbiased one being given by: 
 

σσ 2
MLE

2  
1 - N

N
 =  
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We have to underline that the unbiased estimate of σ is not the square root of the unbiased 
estimate of the variance, but it is given by:  
 

)( 
)

2

N
( 

)
2

1 - N
( 

 )
2

1 - N
( =    2

UnbiasedUnbiased σσ
Γ

Γ
 

 
This result was derived independently by Pearson (1915), Deming and Birge (1934), Treloar 
(1935), and Holtzman (1950).  Jarrett (1968) provides a detailed review. 
 
Linear regression approach.  The approach requires transforming the data as follows: 
 

∆
∆

ii
i

1-i

i

i  = xand
)

S

S(
 = z

ln
 

 
Performing a linear regression without intercept using z as the dependent variable and x as the 
independent one, we recognize µ MLE  provided by Stratonovich interpretation as an estimate for 
the slope parameter and σ2 provided by the Stratonovich interpretation as the unbiased estimate 
of the error variance. According to the linear model theory, the distribution of µ is normal, its 
mean given by µ MLE  and its variance equal to σ2/tN. We mention that the estimate of µ is 
independent of σ2 and a 100(1-α)%  confidence interval for µ is given by  
 

) t/ t +   ,t/ t -  ( N
2

1-N/2,MLEN
2

1-N/2,MLE σµσµ αα  

where tαααα,N is the corresponding critical value of the Student t-distribution.  Moreover, the 
distribution of N σ2

MLE  /σ2 is chi-square with (N - 1) degrees of freedom, and a 100(1-α)%  
confidence interval for σ2  is given by: 
 

) /NN    2
1-N,-1

2
MLE

2
1-N,

2
MLE 21

χσχσ αα
,/(  

 
where α1 + α2 = α ,   α1 > 0, α2 > 0.  Because the distribution of (N - 1) σ2

Unbiased /σ
2 is chi-square 

with (N - 1) degrees of freedom, a 100(1-α)% confidence interval for σ2  is given by 
 

) /N  ,N(    2
1-N,-1

2
Unbiased

2
1-N,

2
Unbiased 21

χσχσ αα
)1(/)1( −−  

 
 
MODEL PREDICTIONS 
 
The expected values for stock values for both interpretations are listed in Table I.  The  
100(1-α)% confidence interval is: 
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])t  z + t /2) - [( S ] ,t  z - t /2) - [( S( /2
2

0/2
2

0 σσµσσµ αα expexp  

 
for the Ito interpretation, and 
 

])t  z + t [ S ] ,t  z - t [ S( /20/20 σµσµ αα expexp  

 
for the Stratonovich interpretation. Although the confidence intervals have different algebraic 
expressions, the numerical predictions are identical as long as the corresponding estimated 
values of the parameters are used. For the logarithmic transformation of the stock prices, both 
interpretations give the same expected value (listed in Table 2) and the same confidence interval: 
 

)t  z + t   ,t  z - t ( /2/2 σµσµ αα  

 
GEOMETRIC BROWNIAN MOTION WITH A DOUBLE ABSORBING B ARRIER 
 
In order to value double barrier options it may be useful to consider the trajectories of the stock 
prices in the presence of a double absorbing barrier (Feller 1954).  Given L ≤≤≤≤ S0 ≤≤≤≤ U, two 
supplementary boundary conditions are added to the Fokker-Planck equation for S: 
 

0 = t) p(U,    ;   0 = t) p(L,  

 
Suppose that S(t) follows the geometric Brownian motion in the presence of a double absorbing 
barrier.  Then the transition probability density function is: 
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This result is an extension of the well-known formula by Lévy (1965).  The solution 
corresponding to y = ln (S/S0) has been obtained by Bachelier (1901) and, as mentioned above, 
is the same for both interpretations:  
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The probabilities of extinction due to each absorbing barrier are defined as: 
 

dS t) p(S, 
dt
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0
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while the total probability of extinction is the sum of the probabilities of extinction due to each 
absorbing barrier (Darling and Siegert 1953).  The probability of extinction for each barrier is: 
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where (µ*) is as specified above.  The probability of extinction by hitting the upper barrier before 
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hitting the lower barrier is: 
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σ
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where (µ*) is as specified above.  This result is an extension of the formula of Darling and 
Siegert (1953).  The cases when either U →→→→ ∞∞∞∞  or L →→→→ 0 reduce to a single absorbing barrier 
(Bachelier 1900; Schrödinger 1915; von Smoluchowski 1915; von Smoluchowski 1916).    
 
RISK-NEUTRAL APPROACH  

 
The Black-Scholes (1973) equation for both Ito and Stratonovich interpretations is: 
 

0 = V  r - 
S

V
   S D) - (r + 

S

V
  

2
S  + 

t

V
   

222

⋅
∂
∂⋅⋅
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∂⋅

∂
∂

2

σ  

 
 
where V is the value of the option, r  is the risk-free return rate, and D is the yield. This result has 
already been proved by Black and Scholes (1973) for the Ito interpretation.  Its demonstration for 
the Stratonovich interpretation follows exactly the same steps. 
 
The same result for the valuation of a European style option is obtained when:  

1. The stock dynamics are described by a geometric Brownian model with the drift equal to 
the risk-free interest rate;  
 

2. The discount rate is equal to the risk-free rate; and  
 

3. The Ito interpretation is used.   
 

This risk-neutral (or equivalent martingale) approach can be traced back to Arrow (1953).  For 
derivatives, it was introduced by Cox and Ross (1976) and subsequently developed by Harrison 
and Kreps (1979), Harrison and Pliska (1981) and Kreps (1982).  The results of Rubinstein and 
Reiner (1991) and Kunitomo and Ikeda (1992) are formulated based upon such a risk-neutral 
approach.  A Monte-Carlo simulation designed to estimate the value of the options may be based 
upon this approach.  However, this risk-neutral approach is valid for option valuation only, and it 
should not be used to simulate the stock dynamics.  As pointed out by Wilmott et al. (1997), it is 
incorrect to conclude that the return rate of the stock equals the risk-free interest rate.   
 
CONCLUSIONS 
 
The white noise, although widely used as a model for random systems, is not physically 
realizable because no process can change infinitely fast. The fact that there are two 
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interpretations of the white noise that yield two different solutions is due to the pathological 
nature of the white noise and Wiener processes. There is no mathematical reason to prefer either 
interpretation. When more realistic correlated noise models are used, the Ito and Stratonovich 
interpretations become identical. As long as a model based upon the white noise is fitted to the 
market values, the two interpretations will provide different estimates of the parameters, but 
identical values concerning the predicted stock prices. 
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TABLE II. STOCHASTIC ORDINARY DIFFERENTIAL EQUATION  
dy = µµµµ dt + dw 
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TABLE III. PARAMETERS IDENTIFICATION FOR THE STOCHA STIC ORDINARY DIFFERENTAIL EQUATION 
dS = µµµµS dt + S dw 
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TABLE IV. PARAMETERS IDENTIFACTION FOR THE STOCHAST IC ORDINARY 
DIFFERENTIAL EQUATION 
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