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INTRODUCTION 
 
One approach used to address the significant departures of the return rates from normality is to 
assume that the conditional distribution of the return rates is normal whereas the unconditional 
distribution is not normal.  The generalized autoregressive conditional heteroscedasticity models 
of Engle (1982) and Bollerslev (1986) belong to this category.  An alternative approach is to 
model the unconditional distribution of the return rates using a non-normal probability density 
function.  Generalized hyperbolic distributions were introduced by Barndorff-Nielsen (1977).  In 
finance, Eberlein and Keller (1995) were the first to apply stochastic processes based on these 
distributions.  The hyperbolic distribution can be presented as a normal variance-mean mixture 
where the mixing distribution is a generalized inverse Gaussian (Bibby and Sørensen 1997).  
Mixtures of normal probability density functions constitute a simplified case of hyperbolic 
density (Alexander and Narayanan 2001).  Brigo and Mercurio (2002a; 2002b) proved the 
existence of a unique risk-neutral measure for the case when the price follows such a stochastic 
process. 
 
MOMENTS 
 
For a given probability density function, f: (-∞, +∞) → R, the raw moments are defined as 
follows: 
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From the normality condition imposed on the probability density function it results that: 
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It should be noted that the first raw moment is the average: 
 

x='
1µ  

 



 
 

                                                                                                                                                         Page 2 of 7 

The Risk-Neutral Distribution Modeled As a Mixture of Normal Distributions 
© Montgomery Investment Technology, Inc. / Sorin R. Straja, Ph.D., FRM 
June 2006 

For the same probability density function, the central moments are defined as follows: 
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From the normality condition imposed on the probability density function and the definition of 
the average it results that: 
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It should be noted that the second central moment is the variance.  The first raw moments can be 
computed as follows: 
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NORMAL DISTRIBUTION 
 
For a normal distribution with average av and standard deviation std we have: 
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The raw moments are as follows: 
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MIXTURE OF THREE NORMAL DISTRIBUTIONS 
 
Let us consider a probability density function that is obtained as the linear combination of three 
normal distributions fi : 
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From the normality condition imposed on the probability density function it results that: 
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Let us consider three normal distributions with the following averages and standard deviations: 
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The raw moments of these three normal distributions are as follows: 
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From the definition of the raw moments, for a mixture of three normal distributions we obtain: 
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From the definition of skewness and kurtosis, for a mixture of three normal distributions we 
obtain: 
 

( ) 2
3

2'
1

'
2

3'
1

'
1

'
2

'
3 23

µµ

µµµµ

−

⋅+⋅⋅−
=skewness  

( )
3

364
22'

1
'
2

4'
1

2'
1

'
2

'
1

'
3

'
4 −

−

⋅−⋅⋅+⋅⋅−
=

µµ

µµµµµµ
kurtosis  

 
The Volatility of the Mixture of Three Normal Distributions 
 
Let us consider a normal distribution with the following average and standard deviation: 
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Let us assume that this normal distribution matches the variance of the non-normal distribution 
obtained as the mixture of three normal distributions.  The volatility is defined by the following 
equation: 
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This equation in σ can be rewritten as follows: 
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then the resulting volatility is: 
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THE ARBITRAGE-FREE CONDITION FOR THE MIXTURE OF THREE NORMAL 
DISTRIBUTIONS 
 
If S0 is the asset value at time t = 0, ST is the asset value at time t = T, r is the risk-free interest 
rate and y is the dividend yield, then the martingale condition for an arbitrage-free economy is 
(Abadir and Rockinger 2003): 
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where the expected value is computed based on the risk-neutral density.  If the risk-neutral 
density is modeled as a mixture of three normal distributions, then this condition becomes: 
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If y = 0 it becomes identical with the no-arbitrage condition reported by Brigo et al. (2002). 
 
PARAMETERS IDENTIFICATION FOR THE MIXTURE OF THREE NORMAL 
DISTRIBUTIONS 
 
The parameters defining the linear combination of three normal distributions are wi, ri, and σi,     
i = 1, 2, 3.  Based on a given set of numerical values for these parameters, we can compute 
σMixture, skewnessMixture, kurtosisMixture, as presented above.  The mixture of normal distributions is 
required to: 

 
1. Fulfill the no-arbitrage condition; and  
 
2. Fit the observed volatility, skewness and kurtosis. 

 
 
The objective function under consideration is: 
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This function should be minimized with respect to wi, ri, and σi (i = 1, 2, 3) with the following 
conditions: 
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wi  ≥  0, i = 1, 2, 3 
σi   >  0, i = 1, 2, 3   
   

The minimization problem is expected to have multiple solutions.  Among these solutions, we 
should select the solution that best fits the observed volatility smile (Alexander and Narayanan 
2001). 
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