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We consider the case of a European style warrant that etitidesontract holder to buy at the
strike price one share of the underlying stock.

BLACK-SCHOLES-MERTON MODEL

The value of the warrant (W) is equal to the value of a call optitinthe same strike and time-
until-expiration:

W = BSMS X,T,0g,1,Y) @

The call option value is estimated using the Black-Scholes-Merton formuld)(BBere S is the
stock value, X is the strike, T is the time-until-expiratiegjs the stock volatility, r is the risk-
free interest rate and y is the dividend yield.

DILUTED BLACK-SCHOLES-MERTON MODEL

The value of the warrant is equal to the diluted value of aopdilbn with the same strike and
time-until-expiration:

N
W = —[BSM(S, X, T,o0g,T, 2
o CBSM( sry) @

The dilution factor is the number of outstanding stock shares yidledi by sum of the numbers
of outstanding stock shares and issued warrants (n).

Crouhy and Galai (1991a) note that in practice warrant prieesf@n calculated by multiplying
the outcome from the Black-Scholes-Merton formula by the dilutiotofacGalai (1989) and
Crouhy and Galai (1991a) argue that this procedure, which is bpseda misinterpretation of
the Galai and Schneller (1978) model. According to Crouhy and Galai (18f8danodel is

inherently wrong:
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“This approach is wrong and, in general, leads to an underestimation of thantarprice. An
alternative approach is to determine the value of the warrants, and ths fithrer liabilities,
simultaneously with the value and the volatility of the firm’s assets.”

GALAI-SCHNELLER MODEL WITH DIVIDEND YIELD

Denoting by V the company’s value, at maturity the payoff for a warrd@aki and Schneller
1978; Cox and Rubinstein 1985 pages 394-395; Hull 1993 pages 228-229):

max(w_nﬂx_x,oj _ max(V-NDX,o] _
N +n N +n
= LErnax(l—x,oj (3)
N +n N

Therefore, the warrant value is equal to the value of a catrofdadjusted for dilution) on the
company (not stock) value (Galai and Schneller 1978; Crouhy and ©8aa; Crouhy and
Galai 1991b):

N V
W = —WUBSM (—, X, T,0.,1,0 4
i (N c 1.0 (4)

In the above equatiastis the volatility of the company (not stock) value and V is (Li and Wong
2004; Li and Wong 2005):

V. = NOSCE '™ +nW (5)
Using the formula for the company value it results:

N Bsmse™+w, X, T, 0..r,00  (6)
N +n N

W

Using the Black-Scholes-Merton formula we get:

NBEY +nW NOX &'
W = [ - [P 7
. (@) -~ () )
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where:

2

ln(NDSDe'y +nD\Nj+(r+JC)DT
4 - N OX (&)
' o. OVT

d, = d,-o. WT (9)

In equation (7)b is the cumulative normal distribution function. It should be noted thatiequa
(7) is an implicit equation for the warrant value which appears onthethight and left hand
side of the equal sign. The solution of this equation requires iterations.

UKHOV-LI-WONG MODEL WITH DIVIDEND YIELD

Following Ukhov (2003; 2004) and Li and Wong (2004; 2005) the warrant pricing eqyajio
can be re-written using the company value instead of the stock value:

—r [T

v = MY mp) - TN iy NsEYT (0
N+n N +n
where:
2
n[v )+(r+UC)DT

N OX 2

d, = 11)

O . OVT
d, —o. INT 12)

o
N
I

Following Ukhov (2003; 2004) from equation (5) we get the following relatipngUkhov
2003; Ukhov 2004).

1

ds dw
N O-— Cexp(- y OT) + n O—— 13
gy oxp(=y ) Y L3)

From equation (4) we get:
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dw 1
- = - _(d 14
dv N +n (d,) 14)

Therefore from equations (13)-(14) it results:

dS _ N+n-nl®d(d) T

av N (N + n)

)

Stock volatility is related to firm volatility (Crouhy and Galai 1994; Sclanld Trautmann 1994;
Ukhov 2003; Ukhov 2004) as follows (see Appendix):

V _dSs
o = o. 10— 16
s Ry 16)

Therefore from equations (15)-(16) it results:

USDSEE'VDTD N (N + n)
o, N+n-nld(d,)

V =

@7)

Equations (10) and (17) represent a system of two non-linear equatibnsvaviunknowns, V
andoc. The solution of this system is used in equation (4) to obtain the warrant value.
UKHOV-DAVES-EHRHARDT MODEL WITH DIVIDEND YIELD

Following Ukhov (2003; 2004) and Dave and Ehrhardt (2005 footnote 20) the warrang prici
equation (7) can be re-written as follows:

. nlv oy NINIX &Y q
V = N+n[¢b(d1) N Tn p(d,")+ N[B (8
where;
V. = NIB+nlW @9
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NBEY +nW = (NB+nW)E T  (20)
2

V g
In +(r-q+—)[T
o [wj< a+ %)
' QJN?

d = d'-o0.0/T (22)

(2D

From equation (19) we get the following relationship:

1 = NI anW 23
oV oV

The warrant value is equal to the value of a call option (adjdstedilution) on the company
(not stock) value (Galai and Schneller 1978; Crouhy and Galai 1991a; Crouhy and Galai 1991b):

N
N +n

W =

EBSM(%, X,T,0.,1,0) (24)

It should be noted that from equations (24) and (19)-(22) we get:

—-qT —-qT
W N gt -NT 2 g,y P9
Vv N +n N N+n N oV
—-qT
= @(dlq)[él—TMEaﬂj:
N +n oV
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—qr — Yy
= S [@(d,")+ NIS{1- e )}:

N +n V- NGI-eT)
e ol \Y |
= Nen )[?v— N [SI1- e‘y”)} )

V-NSfl-e7) 1 : v
Y Nan )[ﬁv— N [SI1- e‘y“)}

In conclusion we get:

ow CD(dlq)
- = __ A1 7 2
oV N +n =

Therefore from equations (23) and (25) it results:

_ q
0S _ N+n-nlP(d,") 26)
AY N (N +n)

From equations (16) and (26) it results:

V = &ESD N(N+n)

0. N +n-np(d,") €

Equations (18) and (27) represent a system of two non-linear equatibnsvaviunknowns, V
andoc. The solution of this system is used in equation (24) to obtain the warrant value.
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LAUTERBACH-SCHULTZ MODEL WITH DIVIDEND DISTRIBUTIONS

Lauterbach and Schultz (1991) use a version of the Galai and Schneller (1978) muoigel faa
known dividend distributions. If in equation (7) instead ofS-we use [S-PV(D] where
PV(D)) is the present value of the future dividend distributions, then wenabia Lauterbach
and Schultz (1991) model.

Under some market conditions it may be more realistic to magengtions regarding the
amount of the dividends paid at different dates rather than to aseamalte of the dividend

yield. In this case the stock price S (with volatiltt§) can be seen as the sum of two
components:

1. One risk-less component corresponding to the known dividends during tbéthie
contract; and

2. Another continuous risky component(&ith volatility s ) with no dividends.

At any given time the risk-less component is the present \luke future dividends. The
discounting rate is the risk-free interest rate.

At the beginning of the simulationy)t assuming that at timedf the dividend payment is;the
value of Swill be:

S'(t,) = S(t,) - D W (28)
i=1

Hull (1993 page 347) assumes thatis constant (noss) 9nd mentions that in generaj > os.
However, Hull (1993) does not indicate how to compigte

Chriss (1997 page 157 equation 4.9.1) suggests the following formula forsevth one
dividend distribution:

—_— S(ty)log
- S(to)_D[E[—(tD—to)D] (29)

O s

In the above formula D is the dividend distribution at timarid ¢ is the present time. This
formula is mentioned also by Hull (2003 page 253).

Beneder and Vorst (2001) expand and improve the Chriss (1997) approximatian a
weighted average of an adjusted and an unadjusted variance dareighting depends on the
time t of the dividend payment;D
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o5 POT -ty) = o °OT -t,) +

2
- S(ty) s
i=1 S(to) _Zn: Di[e[‘(ti_to)lj']

i=]j

[(tj _tj—l) (30)

In the above formula n is the number of known dividend distributions duringifehef the
contract and T is the expiration time. Amaro de Matos eR2@0q) report that the Beneder and
Vorst (2001) approximation performs significantly better than assusaingos.

In order to use the Lauterbach and Schultz (1991) model, it should ki thateoncess is
known, it is necessary to estimatg i.e. the volatility of the company (not stock) value.
UKHOV-CHEN-LI MODEL WITH DIVIDEND DISTRIBUTIONS
For the case of known dividend distributions equation (5) becomes (Chen and Li 2008):
n
V. = NOS(t,)-) D, e %+ nw (31)
i=]

Following Ukhov (2003; 2004) and Chen and Li (2008) the warrant pricing equa@jiacar{ be
re-written as follows:

_ nly  nINIX & "7
Vo= N +n (b (d,) N +n [ (d,) +
+NES)-> DE“ ™) c2!
where: -
In( NVDX j £ (r+ “;2) T
d, = (33)
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N QS(t,) —Zn: D @ 2" + nw

W = N +n Ij:D(d1)_

CONIXEY
N +n

[a>(d,) 39

Following Ukhov (2003; 2004), from equation (31) we get the following relationship:

1 = NO® oW 5
v dv

From equation (35) we get:

dw 1
— = ——[(d 3
R AR <L

Therefore from equations (36)-(37) it results:

das _ N+n-nl(p(d,) (38)
dv N (N +n)

Therefore from equations (16) and (38) it results (Chen and Li 2008):

V = &[SD N(N+n)
. N +n-n0d(d)

(39)

Equations (32) and (39) represent a system of two non-linear equatibnsvaviunknowns, V
andoc. The solution of this system is used in equation (35) to obtain the warrant value.

It should be noted that when Chriss approximation (equation 29) may be used then:it results
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N (N +n)
N +n—-n(d)

vV = % [s(,) - DEC 0 40

Equations (32) and (40) represent a system of two non-linear equatibnsvaviunknowns, V
andoc. This system is similar to equations (10) and (17) where:

1. Instead of S& we use [S-PV(D)] where PV(D) is the present value of the future
dividend distributions; and

2. Instead obswe Usess .
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APPENDIX

Let us assume that the stock (S) follows a geometric Brownian motion process
dS = (u-y)[Sidt + o ,[Sldw (A1)

According to Ito’s Lemma the function V follows the process described below:

v o1 NEE.Y,

dVv = -\)[B +—B72[82Ba¥+— [alt+

e TR R Il v
+JS[SG(%E1W (A2)

This process may be described as follows:
dv = agldt + o.[VIidw (A3)

Therefore, identifying the coefficients of dw from equations (6&3), we have the following
condition:

O, ES%: o.V (Ad)

The function V has not been specified. Some examples are listed below:

V = nlW+NIS (AB)
V. = nIW+NBE" (A6)
V = NIS (A7)
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