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Uniform deviates are random numbers that are uniformly distributed between 0 and 1.  The other 
random numbers are usually generated through transformations of the uniform deviates.  Most 
efforts regarding the design of the random number generators are focused on uniform deviates.   
 
 “In IBM’s early computing days, it used to deliver its mainframe system equipped with its 
infamous RANDU generator […].  This generator has meanwhile repeatedly been reported to be 
highly inadequate […].  Sadly, it has been copied to a variety of other company systems, 
including even the Russian ES system […].  Since it is well conceivable that other computer 
manufacturers have slipped up similarly, and since there is according to Murphy’s law a 
tendency for mistakes to proliferate, I advise the reader never to rely on black box number 
generators that come with any one system and allegedly have been tested.” (Jäckel 2002) 
   
“The C++ standard library provides a facility for generating random numbers using the function 
rand(). […] The version of rand() that comes with your C++ compiler will in all probability be a 
pretty simple generator and wouldn't be appropriate for scientific use but it can still be used for 
some purposes.  It may well be random enough for use in simple programs and games.  If you 
want something a little better, you'll have to look beyond the C++ standard library but for now 
we'll concern ourselves with the functions C++ provides.” (Jacobs 2004). 
 
Park and Miller (1988) have surveyed a large number of random number generators for uniform 
deviates that have been used starting with the 1950s.  The simple multiplicative congruential 
algorithm 
 

I j+1 = a Ij  (mod m) 
 
is competitive with any more general linear congruential generators if the multiplier a and the 
modulus m are chosen adequately.  Park and Miller (1988) selected the “Minimal Standard” 
generator with 
 

a = 75 = 16,807 and m = 231 – 1 = 2,147,483,647 
 
It may not be possible to implement it directly in a high-level language because the products 
required may exceed the maximum value for an integer.  Assembly language implementation is 
straightforward, but it is not portable from machine to machine.  The Schrage algorithm (Schrage 
1979; Bratley et al. 1983), based on an approximate factorization of m, allows the “Minimal 
Standard” algorithm to be implemented in high-level programming languages without being 
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machine specific: 
 

m = a q + r , or q = [m/a] , r = m mod a 
 
with [] denoting integer part.  If r is small, r < q, and 0 < z < (m-1), then  
 
 a (z mod m) = a (z mod q) - r [z/q]   if a (z mod q) - r [z/q] ≥ 0  
 
and 
 
 a (z mod m) = a (z mod q) - r [z/q] + m  if a (z mod q) - r [z/q] < 0.  
 
For the “Minimal Standard” algorithm selected values are: 
 

q = 127,773  and  r = 2,836. 
 
For uniform deviates, we selected to use a portable random number generator that relies on the 
“Minimal Standard” algorithm, but shuffles the output to remove low-order serial correlations.  
A random deviate derived from the jth value in the sequence, Ij, is output not on the jth call, but 
rather on a randomized later call, j+32 on average (Bays and Durham 1976; Knuth 1981).  This 
random number generator, labeled Ran1 by Press et al. (1992), apparently passes all known tests 
except when the number of calls approaches the order of its period (i.e., 2,147,483,647) (Press et 
al. 1992).   
  
For simulations requiring even longer random sequences, L’Ecuyer (1988) recommended to 
combine two different sequences with different periods obtaining a new sequence whose period 
is the least common multiple of the two original periods.  Press et al. (1992) consider this one to 
be the perfect random number generator.  A practical definition of “perfect” is that they “will pay 
$1000 to the first reader who convinces us otherwise” (Press et al. 1992).  However, balancing 
speed and length period, Press et al. (1992) recommend using the Bays and Durham (1976) and 
Knuth (1981) algorithm, unless there is a need for very long random sequences when the 
L’Ecuyer (1988) approach is required.  Jäckel (2002) endorses this recommendation. 
 
For the Gaussian random numbers with zero mean and unit variance we decided to couple the 
Ran1 algorithm described above with the Box and Muller (1958) method.  The polar form of the 
Box-Muller transformation is numerically fast and robust because it does the equivalent of the 
sine and cosine geometrically without a call to the trigonometric function library. Like other 
transformations, the Box and Muller method requires a good quality uniform random number 
generator. 
 
More details regarding the application of the Monte Carlo simulation to option pricing are 
provided by Montgomery and Pizzi (1998). 
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