
  
 
 DESCRIPTIVE STATISTICS  
 
As a starting point, we compute the descriptive statistics. The sample size is n, and the sample 
estimates of the average and of the standard deviation are: 
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NORMALITY TEST 
 
As a first approach we use the following three tests. 
 
1) The test of skewness is done for the null hypothesis H0: normality, versus the alternative 
hypothesis H1: non-normality due to skewness. We compute the skewness coefficient √b1 and its 
associated normal approximation Z(√b1) as follows (D'Agostino, 1970; D'Agostino and Stephens, 
1986): 

  
m

m = b
2

3

3
1  

  
2)-6(n

3)+1)(n+(n  b = Y 1  

 

 
9)+7)(n+5)(n+2)(n-(n

3)+1)(n+70)(n-27n+n3( = )b(
2

12β  

 

 1) - )b(2( + 1- = W 12
2 β  

 

 
W 

1 = 
ln

δ  

 

 
1) - W(

2 = 
2

α  

 

]  Y + 1+)Y([  = )bZ( 2
1 αα

δ ln  

 

© Montgomery Investment Technology, Inc. / Sorin Straja, PhD 
Page 2 
 



  
 
2) The test of kurtosis is performed for the null hypothesis H0: normality, versus the alternative 
hypothesis H1: non-normality due to kurtosis. We compute the kurtosis coefficient b2 and its 
associated normal approximation Z(b2) as follows (Anscombe and Glynn, 1983; D'Agostino and 
Stephens, 1986): 
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3) The omnibus test (D'Agostino and Pearson, 1973) presents a statistic that combines the above 
two tests and produces an omnibus test of normality. The null hypothesis is H0: normality, versus the 
alternative hypothesis H1: non-normality due to either skewness or kurtosis. The test statistic is: 
 

K2 = Z2(√b1) + Z2(b2)          
 
When the population is normal, it has approximately a chi-square distribution with 2 degrees of 
freedom. Computational details are presented by D'Agostino et al. (1990).  
 
 
As a second approach, we use the concept of probability plots. It is based upon a graphical 
presentation of the transformed data that will be approximately lying on a straight line if the 
distribution is normal. Deviations from linearity correspond to various types of non-normality, such 
as skewness, kurtosis, outliers or censoring in the data. Using the approximation of Blom (1958) for 
each data Xi, where Xi  is the  ith  ordered observation from the ordered sample X1 ≤ X2 ≤ ... ≤ Xn, 
we get a point of coordinates 
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Similarly, using the approximation of Tukey (1962), we get the coordinates 
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while for the approximation of Van der Waerden (Lehmann, 1975) we get 
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AUTOCORRELATION FUNCTION 
 
When the data are evenly spaced we can compute the normalized autocorrelation function, R(k). If 
the time series is completely uncorrelated, its normalized autocorrelation function is the so-called δ-
Dirac function. As a lack-of-fit test we compute the Q-statistic (Box and Pierce, 1970; Ljung and 
Box, 1978): 
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which follows approximately a  χ2 distribution with  m degrees of freedom. 
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LOMB PERIODOGRAM 
 

When the data are evenly spaced: 
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where ∆ is the sampling interval and fc is the Nyquist critical frequency, we can perform a Fourier 
analysis (Brigham, 1974). The data contain complete information about all spectral components up 
to the Nyquist frequency, and scrambled or aliased information about components at frequencies 
larger than the Nyquist frequency. Because in our case the data are not evenly spaced, Xi=X(ti), we 
cannot perform a Fourier analysis. Lomb (1976), using the results of Barning (1963) and Vanicek 
(1971), developed an alternative method to deal with the case of unevenly spaced data. Scargle 
(1982) refined it. The Lomb normalized periodogram, spectral power as a function of frequency ω = 
2πf, is defined as: 
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The constant τ is a kind of offset that makes PN(ω) completely independent of shifting all the ti's by a 
constant. It makes the Lomb periodogram identical to what is obtained if one estimates the harmonic 
content of a data set, at a given frequency ω, by linear least-squares (Lomb, 1976) fitting to: 

 t)( B + t)( A = X(t) ωω sincos  

 
Therefore, the Lomb periodogram weights the data on a "per point" basis instead of on a "per time-
interval" basis. We assume that our data are the result of a deterministic component and of an 
independent white Gaussian noise process. The null hypothesis is H0: the data are independent white 
Gaussian random values, versus the alternative hypothesis H1: the data have a deterministic 
component, too. The "normalization" of the Lomb periodogram, through its denominator s2 ,means 
that at any particular ω and in the case of the null hypothesis, PN(ω) has an exponential probability 
distribution with unit average (Scargle, 1982). Therefore, if we scan M independent frequencies, the 
probability that none gives values larger than z is (1 - e-z)M, and therefore the significance level of 
any peak in  PN(ω) is: 

  )e - (1 - 1 = z)P(> M-z  

 
Horne and Baliunas (1986) give results from extensive Monte Carlo experiments for determining M 
in various cases. In general M depends on the number of frequencies sampled, the number of data 
points n, and their detailed spacing. It turns out that M is nearly equal to n when the data are 
approximately evenly spaced, and when the sampled frequencies "fill" the frequency range up to the 
Nyquist frequency. In our case we have searche up to twice the Nyquist frequency and therefore M = 
2n. 
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SENSITIVITY ANALYSIS 
  

High-leverage points are those for which the value of the independent variable is, in some sense , far 
from the rest of the data (Hocking and Pendleton , 1983). The leverage, hi is defined as: 

w]x)WXX(x[ = h ii
-T

i
T

i  

 
where X is the Nxr matrix containing the values of the r independent variables, xi is a column vector 
containing the elements of the i-th row of X, W is a diagonal matrix containing the weights 
associated with the N experimental points, and ()- denotes the generalized inverse of a matrix. In our 
case, because of the intercept, r = 2. Chatterjee and Hadi (1988) point out that the leverage can be 
viewed as the equivalent number of observations that determine the i-th prediction. Huber (1981) 
suggests a 0.2 critical value. According to this rule, special attention should be given to observations 
whose predicted values are determined by an equivalent of 5 or fewer observations. Because  r/N  is 
the average value, Hoaglin and Welsch (1978) suggested  2r/N  as a critical value . 
  
Let define the residual for the i-th experimental point, ei , as the difference between the predicted 
and experimental values. An outlier is a point exhibiting a residual in absolute value by far greater 
than the rest. The outlier is a peculiarity and it should be submitted to a particularly careful 
examination to see if the reason for this peculiarity can be determined. Sometimes the outlier 
provides information due to the fact that it arises from an unusual combination of circumstances that 
may be of special interest to the researcher and requires further investigation rather than rejection 
(Draper and Smith, 1981). Outliers are identified via statistical measures based on residuals. 
Chatterjee and Hadi (1988) introduced the internally studentized residual (also called the 
standardized residual) defined as the usual residual divided by its estimated standard deviation: 
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and the externally studentized residual (also called the jackknife residual) estimated when that point 
is deleted from the variance estimation as: 
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An approximate critical value for ISR is √[(N-r)F/(N-r-1+F)]  where F is the  100(1-α/N)th  
percentile of the  F1,N-r-1  distribution. Because ESR has a student distribution with (N-r-1) degrees of 
freedom, a reasonable critical value choice would be 2, while 3 seems to be a conservative one 
(Chatterjee and Hadi , 1988). 
 
Influential points are those observations that excessively influence the fitted regression equation as 
compared to other observations in the data set. Measures for detecting influential points are 
commonly based on the omission approach ( i.e. they measure changes in the parameters estimates 
or predicted values when the i-th data point is deleted from the analysis ). Cook's distance (Cook, 
1977) measures the change in the estimated regression coefficients: 
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It combines two measures, giving information about high-leverage points and outliers. Cook and 
Weisberg (1982) refer to it as the potential of the i-th observation in the determination of the 
regression parameters. As critical values, Cook (1977) suggests the percentiles of the Fr,N-r  
distribution. Welsch and Kuh (1977) introduced a similar measure, DFFITS, based on the externally 
studentized residual: 

)h - (1 s
h w e = DFFITS 2

ii
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Belsley et al. (1980) recommend using 2√(r/N) as a cut-off value, but 2√[1/(N-1)] would be a more 
appropriate choice (Chatterjee and Hadi, 1988).  
 
We point out that outliers need not be influential points, influential points need not be outliers, and 
while points with large residuals are not desirable, a small residual does not imply that the 
corresponding observation is a typical one. It is expected that some individual data points may be 
flagged as outliers, high-leverage or influential points. Any point falling into one of these categories 
should be carefully examined for accuracy (transcription error, gross error), relevancy or special 
significance (abnormal market conditions). Outliers should always be scrutinized carefully. Points 
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with high-leverage that are not influential do not cause any problem, but points with high leverage 
that are influential should be looked at carefully. If no unusual circumstances are found, these points 
should not be deleted as a routine matter (Chatterjee and Hadi , 1988). To get an idea of the 
sensitivity of the data, the parameters should be estimated with and without the above-mentioned 
points. 
 
 

© Montgomery Investment Technology, Inc. / Sorin Straja, PhD 
Page 11 
 



  
 

REFERENCES 
 

Anscombe, F.J., and Glynn, W.J.(1983) "Distribution of the kurtosis statistic b2 for normal 
statistics", Biometrika, 70,  227 - 234. 

 
Barning, F.J.M. (1963) "The numerical analysis of the light-curve of 12 Lacertae",  Bulletin 

of the Astronomical Institutes of the Netherlands, 17, 22-28. 
 

Belsley, D.A., Kuh, E. and Welsch, R.E.(1980) Regression Diagnostics: Identifying 
Influential Data and Sources of Collinearity, John Wiley & Sons, New York. 

 
Blom, G.(1958) Statistical Estimates and Transformed Beta Variables, New York, Wiley. 

 
Box,  G. E. P.  and Pierce, D. A. (1970) “Distribution of Residual Autoccorelations in 

Autoregressive-Integrated Moving Average Time Series Models”, Journal of the 
American Statistical Association, 65, 1509-1526. 

 
Brigham, E.O. (1974) The Fast Fourier Transform, Englewood Cliffs, New Jersey, Prentice 

Hall. 
 

Chatterjee, S. and Hadi, A.S. (1988) Sensitivity Analysis in Linear Regression, John Wiley 
& Sons, New York. 

 
Cook, R.D. (1977) "Detection of Influential Observations in Linear Regression", 

Technometrics, 19 , 15-18. 
 

Cook, R.D. and Weisberg, S. (1982) Residuals and Influence in Regression, Chapman and 
Hall, London. 

 
D'Agostino, R.B. (1970) "Transformation to normality of the null distribution of g1", 

Biometrika, 57, 679-681. 
 

D'Agostino, R.B., Belanger, A., and D'Agostino, R.B., Jr. (1990) " A suggestion for using 
powerful and informative tests of normality", The American Statistician, 44, 316-
321. 

 
D'Agostino, R.B., and Pearson, E.S. (1973) "Testing for departures from normality. I. Fuller 

empirical results for the distribution of b2 and √b1", Biometrika, 60, 613 - 622. 
 

D'Agostino, R.B., and Stephens, M.A. (1986) Goodness-of-fit Techniques, New York, 
Marcel Dekker. 

© Montgomery Investment Technology, Inc. / Sorin Straja, PhD 
Page 12 
 

 



  
 

Draper, N.R. and Smith, H. (1981) Applied Regression Analysis, 2nd ed., John Wiley & 
Sons, New York. 

 
Hoaglin, D.C. and Welsch, R.E. (1978) "The Hat Matrix in Regression and ANOVA", The 

American Statistician, 32 , 17-22. 
 

Hocking, R.R. and Pendleton, O.J. (1983) "The Regression Dilemma", Communications in 
Statistics: Theory and Methods, 12 , 497-527. 

 
Horne, J.H. and Baliunas, S.L. (1986) "A prescription for period analysis of unevenly 

sampled time series", The Astrophysical Journal, 302, 757-763.  
 

Huber, P. (1981) Robust Statistics, John Wiley & Sons, New York. 
 

Lehmann, E.L. (1975) "Nonparametrics: Statistical Methods Based on Ranks", Holden-Day, 
San Francisco. 

 
Ljung, G. M., and Box, G. E. P. (1978) “On a measure of lack of fit in time series models”, 

Biometrika, 65, 297-303. 
 

Lomb, N.R. (1976) "Least-squares frequency analysis of unequally spaced data", 
Astrophysics and Space Science, 39, 447-462. 

 
Scargle, J.D. (1982) "Studies in astronomical time series analysis. II. Statistical aspects of 

spectral analysis of unevenly spaced data", The Astrophysical Journal, 263, 835-853. 
 

Tukey, John W. (1962) "The Future of Data Analysis", Annals of Mathematical Statistics, 
  33, 1 - 67. 
 

Vanicek, P. (1971) "Further development and properties of the spectral analysis by least-
squares", Astrophysics and Space Science, 12, 10-33. 

 
Walpole, R.E., and Myers, R.H. (1978) Probability and Statistics for Engineers and 

Scientists, 2nd Edition, New York, Macmillan Publishing Co. 
 

Welsch, R.E. and Kuh, E. (1977) "Linear Regression Diagnostics", Technical Report 923-
77, Sloan School of Management, Massachuset Institute of Technology. 

© Montgomery Investment Technology, Inc. / Sorin Straja, PhD 
Page 13 
 


